咨询反馈
扫码关注

微信扫一扫即刻开始会话

返回顶部

伊特克斯

手套箱,真空手套箱
Phone
Sale
service

400 086 8156

Phone
Mobile
phone

13811495691

从第一代到第三代

宽禁带半导体有哪些优势?

第一代半导体材料是指硅、锗为代表的元素半导体材料,应用极为普遍,目前90%以上的半导体产品是用硅基材料制作的;第二代半导体材料是以砷化镓、磷化铟为代表的化合物材料。比如广泛应用的碳化硅半导体器件,相比第一代和第二代半导体材料,拥有良好的耐热性、耐压性和极低的导通能量损耗,是制造高压功率器件与高功率射频器件的理想材料。而另一种开始大规模普及的氮化镓材料,可以显著增强半导体的性能和设计。与其他材料相比,它可以在更高的频率下以更高的效率支持更高的增益。氮化镓具备出色的热性能以及更高的击穿电压,这使得设计和制造体积更小、更薄,又不会影响功耗、可靠性或安全性的半导体材料成为可能。

禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。禁带宽度决定了半导体在不同温度和电场下的导电性能,宽禁带半导体能够在更高的温度、电压和频率下运行,从而降低损耗、提高效率,这一优势对于新能源汽车和5G通信、航天航空和军事系统等领域尤其重要,也可以应用于更复杂的环境。


宽禁带半导体材料

从碳化硅到金刚石

我们一般将禁带宽度大于2.3电子伏特(eV)的半导体材料称为宽禁带半导体材料。碳化硅是目前发展最成熟的宽禁带半导体材料,氮化镓则紧随其后。与此同时,业界也在积极开发新的宽禁带半导体材料。金刚石就是俗称的“金刚钻”,具有更宽的禁带宽度,成为国际前沿研究热点。金刚石热导率是已知半导体材料中最高的,因而是一种极具有优势的半导体材料,可以满足未来大功率、强电场和抗辐射等方面的需求,是制作功率半导体器件的理想材料。在智能电网、轨道交通等领域有着广阔的应用前景。

正是由于金刚石的性能,人们很早就开启了对金刚石的开发研究。20世纪70年代,美国科学家开发出利用高温高压法(HPHT)生长小块状金刚石单晶,开启了金刚石研究的热潮。近年来随着后摩尔时代的来临,人们在新材料领域的研发投入不断增长,也加速了金刚石等超宽禁带半导体材料的开发。


近年来金刚石功率电子学在材料和器件方面均有新的技术突破:在材料方面,采用高温高压法制备的单晶金刚石直径已达20mm,且缺陷密度较低。如果是采用化学气相沉积(CVD)法,同质外延生长的独立单晶薄片具有缺陷密度低的特点,最大尺寸可达1英寸;采用“平铺克隆”晶片的马赛克拼接技术生长的金刚石晶圆可达2 英寸。而采用金刚石异质外延技术的晶圆可达4英寸。而如果是低成本的异质外延CVD 法,金刚石多晶薄膜的发展和应用已很活跃,晶圆已达8 英寸,已可作为导热衬底,用于新一代GaN功率电子器件。

金刚石材料的掺杂技术是形成功率器件的基础,一直也是研究的热点。由于金刚石的密排结构与小间隙。传统的元素掺杂技术通常会引起金刚石严重的晶格畸变,并导致深能级掺杂,室温载流子激活困难。因此过去20多年来,N 型掺杂技术一直被认为是一个难点。近期相关报道显示,N型掺杂金刚石材料取得突破性进展,掺杂浓度达1020 cm-3。如果从研发趋势上看,未来的金刚石异质结很可能打破人们的惯性思维,掺杂可能仅仅是名词上的沿用,真正的内涵将完全颠覆人们现阶段的认知。

日本投入金刚石半导体研究

输出功率达到最高

被称为“终极功率半导体”、使用金刚石的电力控制用半导体的开发取得进展。去年日本佐贺大学与精密零部件制造商合作开发出了用金刚石制成的功率半导体,并以1平方厘米 875 兆瓦的电力运行。该功率半导体在已有的金刚石半导体中,输出功率值为全球最高,在所有半导体中也仅次于氮化镓产品的约 2090 兆瓦。与作为新一代功率半导体的碳化硅(SiC)产品和氮化镓(GaN)产品相比,金刚石半导体耐高电压等性能出色,电力损耗被认为可减少到硅制产品的五万分之一。


金刚石功率半导体的耐热性和抗辐射性也很强,到2050年前后,有望成为人造卫星等所必需的构件。金刚石材料具备载流子迁移率高、载流子饱和漂移速率大、击穿场强大等特性,是制造大功率、高温、高频器件的理想材料,由于它的带隙宽、热导率高、击穿电场强、极高的电荷迁移率(CVD 金刚石的电子迁移率 > 75000px2/V.s),使得金刚石半导体器件能够在高频、高功率、高电压以及强辐射等十分恶劣的环境中运行,被称为“终极半导体材料”。

普通半导体器件在这种极端环境下的寿命非常短,而日本公司发现,金刚石半导体器件在450摄氏度的高温和辐射强度极高的恶劣环境下也能正常工作。此外,为保护半导体器件免受强辐射和高温环境的影响,原本需要用沉重的铅包裹机器人的核心部分,并配备专门的冷却装置,而配备金刚石半导体后,就可以省去这些装置,从而减轻机器人重量,提高工作效率。不仅是半导体,从材料生长、器件结构、器件工艺等方面,金刚石的研发都有很大的进展,这为金刚石早日得到真正市场应用开启了新的契机。

金刚石产量大国

中国半导体研发也在进行

全球天然金刚石年产量约为1.5亿克拉,而人造金刚石产量则超过200亿克拉,其中95%产量来自于中国大陆。关于我国在金刚石方面的研究,相关专家指出,我国作了大量的探索性研究工作,但是与先进国家相比还有巨大差距,主要表现在:关键工艺设备依赖进口,没有自主知识产权,容易遭到国外封锁;单晶金刚石衬底无法在国内稳定获取;没有先进的大尺寸单晶金刚石薄膜的生长工艺等。

因此,未来金刚石材料和功率器件的发展重点应集中在几个方向:首先是要开发出满足功率半导体器件制造要求的2~4英寸金刚石单晶衬底制备技术。特别是应重点突破2~4英寸金刚石单晶材料技术,材料质量可以满足金刚石功率器件研发的需求。其次是在高质量金刚石N型掺杂技术方面进一步取得突破,提高电子和空穴迁移率,为研制金刚石功率器件奠定基础。第三是掌握金刚石器件研制的核心关键工艺,研制出高性能的金刚石功率器件。开展金刚石材料和器件关键设备的研发,获得自主知识产权,并实现商业化。


半导体芯片焊接

安全的环境尤为重要

芯片的焊接是指半导体芯片与载体(封装壳体或基片)形成牢固的、传导性或绝缘性连接的技巧。焊接层除了为器件提供机械连接和电连接外,还须为器件提供良好的散热通道。但是,因芯片焊接(粘贴)不良造成的失效也越来越引起了人们的重视,因为这种失效往往是致命的,不可逆的。而在各种失效情况下,有多种基于环境所造成的问题,是最不容忽视的。

芯片背面氧化

器件生产过程中,焊接前往往先在芯片背面蒸金。在Au-Si共晶温度下,Si会穿透金层而氧化生成SiO2,这层SiO2会使焊接浸润不均匀,导致焊接强度下降。即便在室温下,硅原子也会通过晶粒间的互扩散缓慢移动到金层表面。

因此,在焊接时保护气体N2必须保证足够的流量,最好加入部分H2进行还原。芯片的保存也应引起足够的重视,不仅要关注环境的温湿度,还应考虑到其将来的可焊性,对于长期不用的芯片应放置在氮气柜中保存。


基片清洁度差

基片被沾污、有部分油渍或氧化会严重影响焊接面的浸润性。这种沾污在焊接过程中是较简单观察到的,这时必须对基片进行再处理。要解决芯片微焊接不良问题,必须明白不同技巧的机理,逐一分析各种失效模式,及时发现影响焊接(粘贴)质量的不利因素,同时严格生产过程中的检验,加强制造环境管理,才能有效地避免因芯片焊接不良对器件可靠性造成的潜在危害。

所以在芯片制造的过程中

如果能配合手套箱进行生产环境保护

就能有效的避免这些问题


半导体芯片手焊接套箱

半导体芯片焊接手套箱是专门为研究材料科学、化学、半导体及相关行业所设计的,主要配置除烟尘系统、真空烘箱、水冷系统,适用于激光焊接。采用德国BASF除氧材料,美国UOP高效吸水材料,手套箱内水氧成份可长期持续维持在高清洁与高纯度的气体环境中,手/自动控制系统气压;手/自动控制系统的净化状态;自动控制气体净化系统的还原过程;自动提示、报警功能;系统控制参数设置;系统参数记录;系统执行机构工况监测;透明的前面板使操作更方便容易,广泛应用于半导体工业中MOCVD技术。

(文字图片均来自网络,如有侵权请联系删除)